Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Microbiol Spectr ; : e0056024, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647280

ABSTRACT

The continued emergence of Neisseria gonorrhoeae strains that express resistance to multiple antibiotics, including the last drug for empiric monotherapy (ceftriaxone), necessitates the development of new treatment options to cure gonorrheal infections. Toward this goal, we recently reported that corallopyronin A (CorA), which targets the switch region of the ß' subunit (RpoC) of bacterial DNA-dependent RNA polymerase (RNAP), has potent anti-gonococcal activity against a panel of multidrug-resistant clinical strains. Moreover, in that study, CorA could eliminate gonococcal infection of primary human epithelial cells and gonococci in a biofilm state. To determine if N. gonorrhoeae could develop high-level resistance to CorA in a single step, we sought to isolate spontaneous mutants expressing any CorA resistance phenotypes. However, no single-step mutants with high-level CorA resistance were isolated. High-level CorA resistance could only be achieved in this study through a multi-step pathway involving over-expression of the MtrCDE drug efflux pump and single amino acid changes in the ß and ß' subunits (RpoB and RpoC, respectively) of RNAP. Molecular modeling of RpoB and RpoC interacting with CorA was used to deduce how the amino acid changes in RpoB and RpoC could influence gonococcal resistance to CorA. Bioinformatic analyses of whole genome sequences of clinical gonococcal isolates indicated that the CorA resistance determining mutations in RpoB/C, identified herein, are very rare (≤ 0.0029%), suggesting that the proposed pathway for resistance is predictive of how this phenotype could potentially evolve if CorA is used therapeutically to treat gonorrhea in the future. IMPORTANCE: The continued emergence of multi-antibiotic-resistant strains of Neisseria gonorrhoeae necessitates the development of new antibiotics that are effective against this human pathogen. We previously described that the RNA polymerase-targeting antibiotic corallopyronin A (CorA) has potent activity against a large collection of clinical strains that express different antibiotic resistance phenotypes including when such gonococci are in a biofilm state. Herein, we tested whether a CorA-sensitive gonococcal strain could develop spontaneous resistance. Our finding that CorA resistance could only be achieved by a multi-step process involving over-expression of the MtrCDE efflux pump and single amino acid changes in RpoB and RpoC suggests that such resistance may be difficult for gonococci to evolve if this antibiotic is used in the future to treat gonorrheal infections that are refractory to cure by other antibiotics.

2.
Pharmaceutics ; 16(3)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38543280

ABSTRACT

Toxicological studies are a part of the drug development process and the preclinical stages, for which suitable vehicles ensuring easy and safe administration are crucial. However, poor aqueous solubility of drugs complicates vehicle screening for oral administration since non-aqueous solvents are often not tolerable. In the case of the anti-infective corallopyronin A, currently undergoing preclinical investigation for filarial nematode and bacterial infections, commonly used vehicles such as polyethylene glycol 200, aqueous solutions combined with cosolvents or solubilizers, or aqueous suspension have failed due to insufficient tolerability, solubility, or the generation of a non-homogeneous suspension. To this end, the aim of the study was to establish an alternative approach which offers suitable tolerability, dissolution, and ease of handling. Thus, a corallopyronin A-mesoporous silica formulation was successfully processed and tested in a seven-day toxicology study focused on Beagle dogs, including a toxicokinetic investigation on day one. Sufficient tolerability was confirmed by the vehicle control group. The vehicle enabled high-dose levels resulting in a low-, middle-, and high-dose of 150, 450, and 750 mg/kg. Overall, it was possible to achieve high plasma concentrations and exposures, leading to a valuable outcome of the toxicology study and establishing mesoporous silica as a valuable contender for challenging drug candidates.

3.
Pathogens ; 13(2)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38392884

ABSTRACT

Biting midges belonging to the genus Culicoides are tiny stout-shaped hematophagous insects and are thought to transmit the filarial nematode Mansonella perstans. Little is known about the Culicoides fauna in the rain forest belt of the Littoral Region of Cameroon. This study was designed to investigate the diversity, abundance and distribution of Culicoides spp. and their role as the purported vector(s) of M. perstans. Overnight light trap collections and human landing catches (HLCs) revealed eight species of Culicoides with C. grahamii being the most abundant species followed by C. milnei. Four anthropophilic species (C. inornatipennis, C. grahamii, C. fulvithorax and C. milnei) were determined by the HLCs with a higher abundance in the 4-6 p.m. collections. The drop trap technique and Mp419 LAMP assay confirmed C. milnei to be the most efficient vector in enabling the development of the microfilarial stage to the infective larval form of M. perstans. The LAMP assay also revealed that natural transmission of this nematode is fostered by C. milnei and C. grahamii in the wild. In conclusion, C. milnei was shown to be the main vector of M. perstans in the rain forest belt of the Littoral Region of Cameroon.

4.
Lancet Infect Dis ; 24(4): 395-403, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38218194

ABSTRACT

BACKGROUND: More than six million people worldwide, particularly in vulnerable communities in Latin America, are infected with Trypanosoma cruzi, the causative agent of Chagas disease. Only a small portion have access to diagnosis and treatment. Both drugs used to treat this chronic, neglected infection, benznidazole and nifurtimox, were developed more than 50 years ago, and adverse drug reactions during treatment pose a major barrier, causing 20% of patients to discontinue therapy. Fexinidazole proved efficacious in an earlier, interrupted clinical trial, but the doses evaluated were not well tolerated. The present study evaluated fexinidazole at lower doses and for shorter treatment durations. METHODS: In this randomised, double-blind, phase 2 trial, we included adult patients (18-60 years old) with confirmed T cruzi infection by serology and PCR and without signs of organ involvement. We evaluated three regimens of fexinidazole-600 mg once daily for 10 days (6·0 g total dose), 1200 mg daily for 3 days (3·6 g), and 600 mg daily for 3 days followed by 1200 mg daily for 4 days (6·6 g)-and compared them with a historical placebo control group (n=47). The primary endpoint was sustained negative results by PCR at end of treatment and on each visit up to four months of follow-up. This study is registered with ClinicalTrials.gov, NCT03587766, and EudraCT, 2016-004905-15. FINDINGS: Between Oct 16, 2017, and Aug 7, 2018, we enrolled 45 patients (n=15 for each group), of whom 43 completed the study. Eight (19%) of 43 fexinidazole-treated patients reached the primary endpoint, compared with six (13%) of 46 in the historical control group. Mean parasite load decreased sharply following treatment but rebounded beginning 10 weeks after treatment. Five participants had seven grade 3 adverse events: carpal tunnel, sciatica, device infection, pneumonia, staphylococcal infection, and joint and device dislocation. Two participants discontinued treatment due to adverse events unrelated to fexinidazole. INTERPRETATION: The fexinidazole regimens in this study had an acceptable safety profile but did not prove effective against T cruzi infection. Development of fexinidazole monotherapy for treating T cruzi infection has been stopped. FUNDING: The Drugs for Neglected Diseases initiative.


Subject(s)
Chagas Disease , Nitroimidazoles , Trypanosoma cruzi , Adult , Humans , Adolescent , Young Adult , Middle Aged , Treatment Outcome , Chagas Disease/drug therapy , Nifurtimox/adverse effects , Double-Blind Method
5.
PLoS Negl Trop Dis ; 17(12): e0011815, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38096317

ABSTRACT

BACKGROUND: Onchocerca volvulus is a filarial parasite that is a major cause of dermatitis and blindness in endemic regions primarily in sub-Saharan Africa. Widespread efforts to control the disease caused by O. volvulus infection (onchocerciasis) began in 1974 and in recent years, following successful elimination of transmission in much of the Americas, the focus of efforts in Africa has moved from control to the more challenging goal of elimination of transmission in all endemic countries. Mass drug administration (MDA) with ivermectin has reached more than 150 million people and elimination of transmission has been confirmed in four South American countries, with at least two African countries having now stopped MDA as they approach verification of elimination. It is essential that accurate data for active transmission are used to assist in making the critical decision to stop MDA, since missing low levels of transmission and infection can lead to continued spread or recrudescence of the disease. METHODOLOGY/PRINCIPAL FINDINGS: Current World Health Organization guidelines for MDA stopping decisions and post-treatment surveillance include screening pools of the Simulium blackfly vector for the presence of O. volvulus larvae using a PCR-ELISA-based molecular technique. In this study, we address the potential of an updated, practical, standardized molecular diagnostic tool with increased sensitivity and species-specificity by comparing several candidate qPCR assays. When paired with heat-stable reagents, a qPCR assay with a mitochondrial DNA target (OvND5) was found to be more sensitive and species-specific than an O150 qPCR, which targets a non-protein coding repetitive DNA sequence. The OvND5 assay detected 19/20 pools of 100 blackfly heads spiked with a single L3, compared to 16/20 for the O150 qPCR assay. CONCLUSIONS/SIGNIFICANCE: Given the improved sensitivity, species-specificity and resistance to PCR inhibitors, we identified OvND5 as the optimal target for field sample detection. All reagents for this assay can be shipped at room temperature with no loss of activity. The qPCR protocol we propose is also simpler, faster, and more cost-effective than the current end-point molecular assays.


Subject(s)
Intestinal Volvulus , Onchocerca volvulus , Onchocerciasis , Simuliidae , Animals , Humans , DNA, Mitochondrial , Ivermectin/therapeutic use , Onchocerca/genetics , Onchocerca volvulus/genetics , Onchocerciasis/drug therapy , Simuliidae/parasitology
6.
Parasit Vectors ; 16(1): 394, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37907954

ABSTRACT

In its 'Road map for neglected tropical diseases 2021-2030', the World Health Organization outlined its targets for control and elimination of neglected tropical diseases (NTDs) and research needed to achieve them. For many NTDs, this includes research for new treatment options for case management and/or preventive chemotherapy. Our review of small-molecule anti-infective drugs recently approved by a stringent regulatory authority (SRA) or in at least Phase 2 clinical development for regulatory approval showed that this pipeline cannot deliver all new treatments needed. WHO guidelines and country policies show that drugs may be recommended for control and elimination for NTDs for which they are not SRA approved (i.e. for 'off-label' use) if efficacy and safety data for the relevant NTD are considered sufficient by WHO and country authorities. Here, we are providing an overview of clinical research in the past 10 years evaluating the anti-infective efficacy of oral small-molecule drugs for NTD(s) for which they are neither SRA approved, nor included in current WHO strategies nor, considering the research sponsors, likely to be registered with a SRA for that NTD, if found to be effective and safe. No such research has been done for yaws, guinea worm, Trypanosoma brucei gambiense human African trypanosomiasis (HAT), rabies, trachoma, visceral leishmaniasis, mycetoma, T. b. rhodesiense HAT, echinococcosis, taeniasis/cysticercosis or scabies. Oral drugs evaluated include sparfloxacin and acedapsone for leprosy; rifampicin, rifapentin and moxifloxacin for onchocerciasis; imatinib and levamisole for loiasis; itraconazole, fluconazole, ketoconazole, posaconazole, ravuconazole and disulfiram for Chagas disease, doxycycline and rifampicin for lymphatic filariasis; arterolane, piperaquine, artesunate, artemether, lumefantrine and mefloquine for schistosomiasis; ivermectin, tribendimidine, pyrantel, oxantel and nitazoxanide for soil-transmitted helminths including strongyloidiasis; chloroquine, ivermectin, balapiravir, ribavirin, celgosivir, UV-4B, ivermectin and doxycycline for dengue; streptomycin, amoxicillin, clavulanate for Buruli ulcer; fluconazole and isavuconazonium for mycoses; clarithromycin and dapsone for cutaneous leishmaniasis; and tribendimidine, albendazole, mebendazole and nitazoxanide for foodborne trematodiasis. Additional paths to identification of new treatment options are needed. One promising path is exploitation of the worldwide experience with 'off-label' treatment of diseases with insufficient treatment options as pursued by the 'CURE ID' initiative.


Subject(s)
Anti-Infective Agents , Ivermectin , Humans , Ivermectin/therapeutic use , Rifampin , Doxycycline , Fluconazole , Off-Label Use , Anti-Infective Agents/therapeutic use , Drug Combinations , Neglected Diseases/drug therapy , Neglected Diseases/prevention & control
8.
PLoS Negl Trop Dis ; 17(8): e0011503, 2023 08.
Article in English | MEDLINE | ID: mdl-37535695

ABSTRACT

Previous studies have described the association of onchocerciasis (caused by Onchocerca volvulus) with epilepsy, including nodding syndrome, although a clear etiological link is still missing. Cases are found in different African countries (Tanzania, South Sudan, Uganda, Democratic Republic of the Congo, Central African Republic and Cameroon). In our study we investigated immunological parameters (cytokine, chemokine, immunoglobulin levels) in individuals from the Mahenge area, Tanzania, presenting with either epilepsy or nodding syndrome with or without O. volvulus infection and compared them to O. volvulus negative individuals from the same endemic area lacking neurological disorders. Additionally, cell differentiation was performed using blood smears and systemic levels of neurodegeneration markers, leiomodin-1 and N-acetyltyramine-O, ß-glucuronide (NATOG) were determined. Our findings revealed that cytokines, most chemokines and neurodegeneration markers were comparable between both groups presenting with epilepsy or nodding syndrome. However, we observed elevated eosinophil percentages within the O. volvulus positive epilepsy/nodding syndrome patients accompanied with increased eosinophilic cationic protein (ECP) and antigen-specific IgG levels in comparison to those without an O. volvulus infection. Furthermore, highest levels of NATOG were found in O. volvulus positive nodding syndrome patients. These findings highlight that the detection of distinct biomarkers might be useful for a differential diagnosis of epilepsy and nodding syndrome in O. volvulus endemic areas. Trial-registration: NCT03653975.


Subject(s)
Epilepsy , Intestinal Volvulus , Nodding Syndrome , Onchocerca volvulus , Onchocerciasis , Animals , Humans , Onchocerciasis/epidemiology , Nodding Syndrome/epidemiology , Nodding Syndrome/etiology , Intestinal Volvulus/complications , Epilepsy/epidemiology , Uganda/epidemiology , Cytokines
9.
Int J Infect Dis ; 133: 1-4, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37146673

ABSTRACT

OBJECTIVES: Lymphatic filariasis (LF) represents a parasitic disease caused by filarial nematodes. Although some infected individuals present an asymptomatic course, others suffer severe chronic lymphatic pathology, including lymphedema, hydrocele, and elephantiasis. Several studies have shown that host genetic factors influence LF susceptibility and chronic pathology. The current study aimed to conduct the first genome-wide association study to systematically determine LF susceptibility. METHODS: We analyzed genome-wide single-nucleotide polymorphism data from 1459 LF cases and 1492 asymptomatic controls of West African (Ghanaian) descent. RESULTS: We identified two independent genome-wide significant associated genetic variants near the genes HLA-DQB2 (rs7742085) and HLA-DQA1 (rs4959107) contributing to LF and/or lymphedema susceptibility (P <5.0 × 10-8, odds ratios [ORs] >1.30). We also observed suggestive evidence of LF associations (P <1.0 × 10-6) at two non-HLA loci, near the genes ZFHX4-AS1 (rs79562145) and CHP2 (rs12933387). In contrast, we could not replicate any previously reported LF associations drawn from candidate gene association studies. On the polygenic level, we show that our genome-wide association study data explain 24-42% of LF heritability, depending on an assumed population prevalence of 0.5-5.0%. CONCLUSION: Our findings point to an involvement of HLA-mediated immune mechanisms in LF pathophysiology.


Subject(s)
Elephantiasis, Filarial , Lymphedema , Male , Animals , Humans , Elephantiasis, Filarial/genetics , Elephantiasis, Filarial/epidemiology , Genome-Wide Association Study , Wuchereria bancrofti/genetics , Ghana/epidemiology , HLA Antigens
10.
Pathogens ; 12(5)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37242335

ABSTRACT

Approximately 51 million individuals suffer from lymphatic filariasis (LF) caused mainly by the filarial worm Wuchereria bancrofti. Mass drug administration (MDA) programs led to a significant reduction in the number of infected individuals, but the consequences of the treatment and clearance of infection in regard to host immunity remain uncertain. Thus, this study investigates the composition of myeloid-derived suppressor cells (MDSCs), macrophage subsets and innate lymphoid cells (ILCs), in patent (circulating filarial antigen (CFA)+ microfilariae (MF)+) and latent (CFA+MF-) W. bancrofti-infected individuals, previously W. bancrofti-infected (PI) individuals cured of the infection due to MDA, uninfected controls (endemic normal (EN)) and individuals who suffer from lymphoedema (LE) from the Western Region of Ghana. Frequencies of ILC2 were significantly reduced in W. bancrofti-infected individuals, while the frequencies of MDSCs, M2 macrophages, ILC1 and ILC3 were comparable between the cohorts. Importantly, clearance of infection due to MDA restored the ILC2 frequencies, suggesting that ILC2 subsets might migrate to the site of infection within the lymphatic tissue. In general, the immune cell composition in individuals who cured the infection were comparable to the uninfected individuals, showing that filarial-driven changes of the immune responses require an active infection and are not maintained upon the clearance of the infection.

11.
Parasit Vectors ; 16(1): 82, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36859332

ABSTRACT

The World Health Organization 'Ending the neglect to attain the Sustainable Development Goals: A road map for neglected tropical diseases 2021-2030' outlines the targets for control and elimination of neglected tropical diseases (NTDs). New drugs are needed to achieve some of them. We are providing an overview of the pipeline for new anti-infective drugs for regulatory registration and steps to effective use for NTD control and elimination. Considering drugs approved for an NTD by at least one stringent regulatory authority: fexinidazole, included in WHO guidelines for Trypanosoma brucei gambiense African trypanosomiasis, is in development for Chagas disease. Moxidectin, registered in 2018 for treatment of individuals ≥ 12 years old with onchocerciasis, is undergoing studies to extend the indication to 4-11-year-old children and obtain additional data to inform WHO and endemic countries' decisions on moxidectin inclusion in guidelines and policies. Moxidectin is also being evaluated for other NTDs. Considering drugs in at least Phase 2 clinical development, a submission is being prepared for registration of acoziborole as an oral treatment for first and second stage T.b. gambiense African trypanosomiasis. Bedaquiline, registered for tuberculosis, is being evaluated for multibacillary leprosy. Phase 2 studies of emodepside and flubentylosin in O. volvulus-infected individuals are ongoing; studies for Trichuris trichuria and hookworm are planned. A trial of fosravuconazole in Madurella mycetomatis-infected patients is ongoing. JNJ-64281802 is undergoing Phase 2 trials for reducing dengue viral load. Studies are ongoing or planned to evaluate oxantel pamoate for onchocerciasis and soil-transmitted helminths, including Trichuris, and oxfendazole for onchocerciasis, Fasciola hepatica, Taenia solium cysticercosis, Echinococcus granulosus and soil-transmitted helminths, including Trichuris. Additional steps from first registration to effective use for NTD control and elimination include country registrations, possibly additional studies to inform WHO guidelines and country policies, and implementation research to address barriers to effective use of new drugs. Relative to the number of people suffering from NTDs, the pipeline is small. Close collaboration and exchange of experience among all stakeholders developing drugs for NTDs may increase the probability that the current pipeline will translate into new drugs effectively implemented in affected countries.


Subject(s)
Anti-Infective Agents , Onchocerciasis , Trypanosomiasis, African , Animals , Macrolides
12.
Pathogens ; 12(3)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36986309

ABSTRACT

BACKGROUND: Infections with Wuchereria bancrofti are associated with reduced immunity against concomitant infections. Indeed, our previous study described a 2.3-fold increased HIV incidence among individuals with W. bancrofti infection, as measured by the circulating filarial antigen of the adult worm. This new study aimed to retrospectively determine microfilariae status of the participants to assess if the previously described increased HIV susceptibility was associated with the presence of MF in the same cohort. METHODS: CFA positive but HIV negative biobanked human blood samples (n = 350) were analyzed for W. bancrofti MF chitinase using real time PCR. RESULTS: The PCR provided a positive signal in 12/350 (3.4%) samples. During four years of follow-up (1109 person years (PY)), 22 study participants acquired an HIV infection. In 39 PY of W. bancrofti MF chitinase positive individuals, three new HIV infections occurred (7.8 cases per 100 PY), in contrast to 19 seroconversions in 1070 PY of W. bancrofti MF chitinase negative individuals (1.8 cases per 100 PY, p = 0.014). CONCLUSIONS: In the subgroup of MF-producing Wb-infected individuals, the HIV incidence exceeded the previously described moderate increased risk for HIV seen in all Wb-infected individuals (regardless of MF status) compared with uninfected persons from the same area.

13.
Front Immunol ; 14: 1102344, 2023.
Article in English | MEDLINE | ID: mdl-36949937

ABSTRACT

Parasitic nematodes responsible for filarial diseases cause chronic disablement in humans worldwide. Elimination programs have substantially reduced the rate of infection in certain areas, but limitations of current diagnostics for population surveillance have been pointed out and improved assays are needed to reach the elimination targets. While serological tests detecting antibodies to parasite antigens are convenient tools, those currently available are compromised by the occurrence of antibodies cross-reactive between nematodes, as well as by the presence of residual antibodies in sera years after treatment and clearance of the infection. We recently characterized the N-linked and glycosphingolipid derived glycans of the parasitic nematode Brugia malayi and revealed the presence of various antigenic structures that triggered immunoglobulin G (IgG) responses in infected individuals. To address the specificity of IgG binding to these glycan antigens, we screened microarrays containing Brugia malayi glycans with plasma from uninfected individuals and from individuals infected with Loa loa, Onchocerca volvulus, Mansonella perstans and Wuchereria bancrofti, four closely related filarial nematodes. IgG to a restricted subset of cross-reactive glycans was observed in infection plasmas from all four species. In plasma from Onchocerca volvulus and Mansonella perstans infected individuals, IgG binding to many more glycans was additionally detected, resulting in total IgG responses similar to the ones of Brugia malayi infected individuals. For these infection groups, Brugia malayi, Onchocerca volvulus and Mansonella perstans, we further studied the different IgG subclasses to Brugia malayi glycans. In all three infections, IgG1 and IgG2 appeared to be the major subclasses involved in response to glycan antigens. Interestingly, in Brugia malayi infected individuals, we observed a marked reduction in particular in IgG2 to parasite glycans post-treatment with anthelminthic, suggesting a promising potential for diagnostic applications. Thus, we compared the IgG response to a broad repertoire of Brugia malayi glycans in individuals infected with various filarial nematodes. We identified broadly cross-reactive and more specific glycan targets, extending the currently scarce knowledge of filarial nematode glycosylation and host anti-glycan antibody response. We believe that our initial findings could be further exploited to develop disease-specific diagnostics as part of an integrated approach for filarial disease control.


Subject(s)
Brugia malayi , Filariasis , Humans , Animals , Antibodies, Helminth , Antigens , Immunoglobulin G
14.
Front Trop Dis ; 3: 1016176, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36684508

ABSTRACT

Conventional diagnosis of filarial infections is based on morphological identification of microfilariae using light microscopy and requires considerable expertise, is time-consuming, and can be subjective. Loop-mediated isothermal amplification (LAMP) has advantages over microscopy or PCR because of its operational simplicity, rapidity and versatility of readout options. LAMP assays represent a major step forward in improved filarial diagnostic tools suitable for low resource settings and field applicability. The study goal was to retrospectively evaluate the performance and suitability of the O-150, RF4, and Mp419 LAMP assays for diagnosing Onchocerca volvulus, Loa loa and Mansonella perstans infections, respectively, in humans and vectors under experimental and natural field conditions. Surveys were conducted in four health districts of Cameroon using skin snip and thick blood film methods to detect skin (O. volvulus) and blood (L. loa and M. perstans) dwelling microfilaria in humans. Engorged vectors (Simulium spp., Chrysops spp., and Culicoides spp.) were evaluated by LAMP. Dissected, wild-caught vectors were also analyzed. LAMP showed a prevalence of 40.4% (O. volvulus), 17.8% (L. loa) and 36.6% (M. perstans) versus 20.6% (O. volvulus), 17.4% (L. loa) and 33.8% (M. perstans) with microscopy. Simulium spp. were dissected for microscopy and pooled for LAMP. The O-150 LAMP assay infection rate was 4.3% versus 4.1% by microscopy. Chrysops spp. were dissected and analyzed individually in the LAMP assay. The RF4 LAMP assay infection rate was 23.5% versus 3.3% with microscopy. The RF4 LAMP assay also detected parasites in Chrysops spp. fed on low microfilaremic volunteers. The Mp419 LAMP assay infection rate was 0.2% for C. milnei and 0.04% for C. grahamii, while three other species were LAMP-negative. The sensitivity, species specificity, rapidity and ease of its use of these filarial LAMP assays, and validation of their performance in the field support use as alternatives to microscopy as diagnostic and surveillance tools in global health programs aimed to eliminate onchocerciasis.

15.
Front Trop Dis ; 42023 Mar 02.
Article in English | MEDLINE | ID: mdl-38655130

ABSTRACT

Filariae are vector borne parasitic nematodes, endemic in tropical and subtropical regions causing avoidable infections ranging from asymptomatic to stigmatizing and disfiguring disease. The filarial species that are the major focus of our institution's research are Onchocerca volvulus causing onchocerciasis (river blindness), Wuchereria bancrofti and Brugia spp. causing lymphatic filariasis (elephantiasis), Loa loa causing loiasis (African eye worm), and Mansonella spp causing mansonellosis. This paper aims to showcase the contribution of our institution and our collaborating partners to filarial research and covers decades of long research spanning basic research using the Litomosoides sigmodontis animal model to development of drugs and novel diagnostics. Research with the L. sigmodontis model has been extensively useful in elucidating protective immune responses against filariae as well as in identifying the mechanisms of filarial immunomodulation during metabolic, autoimmune and infectious diseases. The institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany has also been actively involved in translational research in contributing to the identification of new drug targets and pre-clinical drug research with successful and ongoing partnership with sub-Saharan Africa, mainly Ghana (the Kumasi Centre for Collaborative Research (KCCR)), Cameroon (University of Buea (UB)) and Togo (Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA)), Asia and industry partners. Further, in the direction of developing novel diagnostics that are sensitive, time, and labour saving, we have developed sensitive qPCRs as well as LAMP assays and are currently working on artificial intelligence based histology analysis for onchocerciasis. The article also highlights our ongoing research and the need for novel animal models and new drug targets.

16.
Parasit Vectors ; 15(1): 462, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36510275

ABSTRACT

It is recognised that paediatric indications and age-appropriate formulations are required to ensure that paediatric populations receive appropriate pharmacotherapeutic treatment. The lack of information on dosing, efficacy and safety data (labelling) is a well-recognised problem for all diseases affecting children. For neglected tropical diseases, the fact that they affect to a large extent poor and marginalised populations in low- and middle-income countries means that there is a low economic return on investment into paediatric development activities compared to other diseases [e.g. human immunodeficiency virus (HIV)]. This review provides an introduction to issues affecting the availability and development of paediatric population-relevant data and appropriate formulations of drugs for NTDs. We are summarising why age-appropriate formulations are important to ensure treatment efficacy, safety and effectiveness, outline initiatives to increase the number of paediatric indications/labelling and age-appropriate formulations, provide an overview of publicly available information on the formulations of oral drugs for NTDs relative to age appropriateness and give an introduction to options for age-appropriate formulations. The review completes with 'case studies' of recently developed paediatric formulations for NTDs, complemented by case studies for fixed-dose combinations for HIV infection in children since such formulations have not been developed for NTDs.


Subject(s)
HIV Infections , Tropical Medicine , Child , Humans , Child, Preschool , HIV Infections/drug therapy , Neglected Diseases/drug therapy , Drug Compounding
17.
PLoS Negl Trop Dis ; 16(11): e0010684, 2022 11.
Article in English | MEDLINE | ID: mdl-36331979

ABSTRACT

BACKGROUND: The objective of this study was to characterise the vector in a small hyper-endemic focus of onchocerciasis (the Kakoi-Koda focus) which has recently been discovered on the western slopes of the rift valley above Lake Albert. METHODOLOGY/PRINCIPAL FINDINGS: Aquatic stages of blackflies were collected by hand from streams and rivers, and anthropophilic adult females were collected by human landing catches. Using a combination of morphotaxonomy and DNA barcoding, the blackflies collected biting humans within the focus were identified as Simulium dentulosum and Simulium vorax, which were also found breeding in local streams and rivers. Simulium damnosum s.l., Simulium neavei and Simulium albivirgulatum were not found (except for a single site in 2009 where crabs were carrying S. neavei). Anthropophilic specimens from the focus were screened for Onchocerca DNA using discriminant qualitative real-time triplex PCR. One specimen of S. vorax was positive for Onchocerca volvulus in the body, and out of 155 S. dentulosum, 30% and 11% were infected and infective (respectively). CONCLUSIONS/SIGNIFICANCE: Simulium dentulosum currently appears to be the main vector of human onchocerciasis within the Kakoi-Koda focus, and S. vorax may be a secondary vector. It remains possible that S. neavei was the main (or only) vector in the past having now become rare as a result of the removal of tree-cover and land-use changes. Simulium vorax has previously been shown to support the development of O. volvulus in the laboratory, but this is the first time that S. dentulosum has been implicated as a probable vector of onchocerciasis, and this raises the possibility that other blackfly species which are not generally considered to be anthropophilic vectors might become vectors under suitable conditions. Because S. dentulosum is not a vector in endemic areas surrounding the Kakoi-Koda focus, it is probable that the Kakoi-Koda focus is significantly isolated.


Subject(s)
Onchocerca volvulus , Onchocerciasis , Simuliidae , Adult , Animals , Female , Humans , Onchocerciasis/epidemiology , Democratic Republic of the Congo/epidemiology , Insect Vectors , Plant Breeding , Simuliidae/genetics
18.
mSphere ; 7(5): e0036222, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36094073

ABSTRACT

Gonorrhea remains a major global public health problem because of the high incidence of infection (estimated 82 million cases in 2020) and the emergence and spread of Neisseria gonorrhoeae strains resistant to previous and current antibiotics used to treat infections. Given the dearth of new antibiotics that are likely to enter clinical practice in the near future, there is concern that cases of untreatable gonorrhea might emerge. In response to this crisis, the World Health Organization (WHO), in partnership with the Global Antibiotic Research and Development Partnership (GARDP), has made the search for and development of new antibiotics against N. gonorrhoeae a priority. Ideally, these antibiotics should also be active against other sexually transmitted organisms, such as Chlamydia trachomatis and/or Mycoplasma genitalium, which are often found with N. gonorrhoeae as co-infections. Corallopyronin A is a potent antimicrobial that exhibits activity against Chlamydia spp. and inhibits transcription by binding to the RpoB switch region. Accordingly, we tested the effectiveness of corallopyronin A against N. gonorrhoeae. We also examined the mutation frequency and modes of potential resistance against corallopyronin A. We report that corallopyronin A has potent antimicrobial action against antibiotic-susceptible and antibiotic-resistant N. gonorrhoeae strains and could eradicate gonococcal infection of cultured, primary human cervical epithelial cells. Critically, we found that spontaneous corallopyronin A-resistant mutants of N. gonorrhoeae are exceedingly rare (≤10-10) when selected at 4× the MIC. Our results support pre-clinical studies aimed at developing corallopyronin A for gonorrheal treatment regimens. IMPORTANCE The high global incidence of gonorrhea, the lack of a protective vaccine, and the emergence of N. gonorrhoeae strains expressing resistance to currently used antibiotics demand that new treatment options be developed. Accordingly, we investigated whether corallopyronin A, an antibiotic which is effective against other pathogens, including C. trachomatis, which together with gonococci frequently cause co-infections in humans, could exert anti-gonococcal action in vitro and ex vivo, and potential resistance emergence. We propose that corallopyronin A be considered a potential future treatment option for gonorrhea because of its potent activity, low resistance development, and recent advances in scalable production.


Subject(s)
Anti-Infective Agents , Coinfection , Gonorrhea , Humans , Gonorrhea/drug therapy , Gonorrhea/prevention & control , Neisseria gonorrhoeae/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Chlamydia trachomatis , Anti-Infective Agents/pharmacology
19.
Pharmaceutics ; 14(8)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36015283

ABSTRACT

In vivo studies in mice provide a valuable model to test novel active pharmaceutical ingredients due to their low material need and the fact that mice are frequently used as a species for early efficacy models. However, preclinical in vitro evaluations of formulation principles in mice are still lacking. The development of novel in vitro and in silico models supported the preclinical formulation evaluation for the anti-infective corallopyronin A (CorA). To this end, CorA and solubility-enhanced amorphous solid dispersion formulations, comprising povidone or copovidone, were evaluated regarding biorelevant solubilities and dissolution in mouse-specific media. As an acidic compound, CorA and CorA-ASD formulations showed decreased solubilities in mice when compared with human-specific media. In biorelevant biphasic dissolution experiments CorA-povidone showed a three-fold higher fraction partitioned into the organic phase of the biphasic dissolution, when compared with CorA-copovidone. Bioavailabilities determined by pharmacokinetic studies in BALB/c mice correlated with the biphasic dissolution prediction and resulted in a Level C in vitro-in vivo correlation. In vitro cell experiments excluded intestinal efflux by P-glycoprotein or breast cancer resistance protein. By incorporating in vitro results into a physiologically based pharmacokinetic model, the plasma concentrations of CorA-ASD formulations were predicted and identified dissolution as the limiting factor for bioavailability.

20.
Antibiotics (Basel) ; 11(7)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35884174

ABSTRACT

Corallopyronin A (CorA) is active against Gram-positive bacteria and targets the switch region of RNA polymerase. Because of the high frequency of mutation (FoM) leading to rifampicin resistance, we determined the CorA FoM in S. aureus using fluctuation analysis at 4 × minimum inhibitory concentration (MIC). Resistant mutants were characterized. S. aureus strains HG001, Mu50, N315, and USA300 had an MIC of 0.25 mg/L. The median FoM for CorA resistance was 1.5 × 10−8, 4.5-fold lower than the median FoM of 6.7 × 10−8 for rifampicin, and was reflected in a 4-fold lower mutation rate for CorA than rifampicin (6 × 10−9 for CorA vs. 2.5 × 10−8 for rifampicin). In CorA-resistant/rifampicin-sensitive strains, the majority of amino acid exchanges were S1127L in RpoB or K334N in RpoC. S. aureus Mu50, a rifampicin-resistant clinical isolate, yielded two further exchanges targeting amino acids L1131 and E1048 of the RpoB subunit. The plating of >1011 cells on agar containing a combination of 4 × MIC of rifampicin and 4 × MIC of CorA did not yield any growth. In conclusion, with proper usage, e.g., in combination therapy and good antibiotic stewardship, CorA is a potential antibiotic for treating S. aureus infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...